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Supersymmetric Pair of q-Deformed Nonlocal
Operators
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A simple version of the q-deformed calculus is used to generate a pair of q-
nonlocal, second-order difference operators by means of deformed counterparts
of Darboux intertwining operators for the Schrödinger–Hermite oscillators at
zero factorization energy. These deformed nonlocal operators may be considered
as supersymmetric partners and their structure contains contributions originating
in both the Hermite operator and the quantum harmonic oscillator operator. There
are also extra 6x contributions. The undeformed limit, in which all q-nonlocalities
wash out, corresponds to the usual supersymmetric pair of quantum mechanical
harmonic oscillator Hamiltonians. The more general case of negative factorization
energy is briefly discussed as well.

In this work, I present a simple q-deformed procedure [1] for the basic
case of the one-dimensional quantum harmonic oscillator, by which I build
a ‘supersymmetric’ pair of q-nonlocal operators possessing terms whose q →
1 limits belong to either the Hermite polynomial operator or the Schrödinger
quantum oscillator operator. There are 6x extra terms as well. The procedure
is based on the idea of using as fundamental tools a sort of deformed counter-
part of the intertwining operators encountered in the area of Darboux transfor-
mations (see ref. 2 for review). I shall use their factorization property to get
the q-deformed second-order operators which, being q-nonlocal, may be
considered as more general than both the usual Hermite one and the quantum
mechanical harmonic oscillator operator.

The standard Hermite operator ÔH reads (D 5 d/dx)

ÔH 5 D2 2 2xD 1 2n (1)

and gives rise to the equation for the Hermite polynomials Hn(x), ÔHHn(x)
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5 0. Writing ÔH 5 D2 2 2xD 2 2 1 2(n 1 1), I shall treat D2 2 2xD 2
2 as the Fokker–Planck (FP) part of the Hermite operator for a stationary
transition-probability density since 22xD corresponds to the (dU/dx)D drift
contribution in the FP stationary operator (drift potential U 5 2x2), whereas
22 stands for the d 2U/dx2 contribution of the FP drift. The last term 2(n 1
1) gives the departure of the Hermite operator from the corresponding FP
stationary operator for which polynomial oscillations are not allowed, and
in fact is responsible for turning the FP interpretation into a formal one and
not a physical one. As is well known for this basic case, by means of the
functions fn 5 [exp(2x2/2)]Hn(x) one can go to the operator

Ôf 5 2D2 1 [x2 2 (2n 1 1)] (2)

which, in the fn space, is essentially the Schrödinger quantum harmonic
oscillator operator up to a scaling, choice-of-units factor. One should notice
that this usage of the fn functions leads to the loss of one half of the d 2U/
dx2 drift contribution. The remaining half gets the famous zero-point energy
interpretation when the scaling 1–2 Ôf is performed. In the FP interpretation,
the latter scaling corresponds to setting the diffusion constant equal to 1/2
and provides the usual quantum mechanical harmonic oscillator wavefunc-
tions Nnfn , where Nn 5 (2nn!!p)21/2 is the normalization factor.

I now briefly recall that in the case of the one-dimensional Schrödinger
operator within the context of supersymmetric quantum mechanics
(SUSYQM) (see ref. 3 for review) the standard Darboux transformation
operator reads

T 5 2tu(x) 1 D 5 2u8(x)/u(x) 1 D (3)

where the prime denotes the derivative with respect to x. When acting on
the solutions cn(x) of the initial Schrödinger equation h0cn(x) 5 Encn(x), it
transforms them into the solutions of another Schrödinger equation h1wn(x)
5 Enwn(x), wn(x) 5 NnTcn(x), with the same eigenvalues En. Henceforth, I
will put the ground-state energy equal to zero, E0 5 0, since this does not
affect in any way the results. The new exactly solvable Hamiltonian has the
form h1 5 h0 1 DV(x), where the potential difference is of Darboux type
DV(x) 5 22(ln u)9. The function u 5 u(x) is a so-called transformation
function, being a solution of the initial Schrödinger equation h0u(x) 5 eu(x),
with e # 0 usually known as the factorization energy. It is well established
that when e , 0 one can work with a nodeless transformation function by
performing an analytic continuation [4]. Thus, u(x) Þ 0 for any value of the
variable and 1/u(x) is not a square-integrable function. In this case u ¸ *1

and the set {.wn&} is a complete basis in the Hilbert space *1 provided the
initial system {.cn&} is complete. The operator T + 5 2tu(x) 2 D provides
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the backward transformation .cn& 5 NnT +.wn&, and together with T allows
for the following factorizations:

T +T 5 h0 2 e, TT + 5 h1 2 e (4)

The operators T and T + are well defined ∀c P *1 and are conjugated to
each other with respect to the inner product in the *1 space.

My purpose now is to get q-deformed second-order operators by means
of deformed counterparts of the aforementioned intertwining operators. I still
have to present some definitions and rules of the deformed calculus. Since
the independent variable is maintained commutative, the employed version
of the deformed calculus is similar to that previously used by some authors
to deform the Coulomb problem [5]. Symmetric definitions of the q-number
[x]q 5 (qx 2 q2x /q 2 q21) and q-derivative

Dq f (x) 5
f (qx) 2 f (q21x)

x(q 2 q21)
(5)

are used together with some basic rules of Jackson’s calculus [1] such as
Dqxn 5 [n]qxn21, D2

qxn 5 [n]q[n 2 1]q xn22, Dq(FG) 5 (DqF )G(qx) 1
F(q21x)(DqG) for any two functions F and G, respectively. The definition of
the q-exponential is

eq(x) 5 o
`

n50

xn

[n]q!
(6)

which reduces to the usual exponential function as q → 1, and moreover is
invariant under q → q21.

The main idea of this work is based on the following scheme. First, we
employ as Darboux transformation functions deformed counterparts of the
oscillator vacua cq } eq(bx2), where b 5 61/2 for the irregular and regular
vacuum, respectively. Second, to exploit the factorization property of first-
order deformed operators of the form

T q
1 5 Dq 2

Dqcq

cq
5 Dq 2 bq(x2)x (7)

T q
2 5 2Dq 2

Dqcq

cq
5 2Dq 2 bq(x2)x (8)

where

bq(x2) 5 b1qeq(qbx2) 1 q21eq(q21bx2)

eq(bx2) 2 (9)

The form of bq(x2) is a result of Jackson’s calculus rules. As one can see,
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the T q
1 and T q

2 operators have been written by analogy to the continuous
intertwining operators. A straightforward calculation gives the second-order
deformed operators that can be obtained from the products T q

2T q
1 and

Tq
1T q

2, respectively. One gets

Ô q
b [ T q

2T q
1 5 2D2

q 2 [(Dbq)xDq] 1 [b2
q(x2)x2]→x

1 [q(Dqbq(x2))x]→qx 1 [bq(q22x2)]→qx (10)

and

Ô q
f [ T q

1T q
2 5 2D2

q 1 [(Dbq)xDq] 1 [b2
q(x2)x2]→x

2 [q(Dqbq(x2))x]→qx 2 [bq(q22x2)]→qx (11)

where

Dbq 5 bq(x2) 2 q21bq(q22x2) (12)

The operators Ô q
b and Ô q

f may be considered as supersymmetric partners
since they have been built according to the well-known SUSYQM method.
At this point one should notice the interesting mixed structure of the two q-
nonlocal operators that entail parts of both ÔH and Ôf. The directional
supscripts indicate the argument of the solution on which the nonoperatorial
parts act. The two operators are nonlocal operators whose spaces of solutions
are the functions f(q)

n (x) } eq(2x2/2)H(q)
n (x), where the deformed Hermite

polynomials can be defined by a q-deformed Rodrigues representation

H (q)
n 5 (21)neq(x2)Dn

q(eq(2x2)) (13)

Notice that the Dq terms in (10) and (11) are identical, but opposite in sign
and correspond to the first derivative drift term in the Hermite differential
operator. Of course, if one prefers the FP interpretation the two operators
should be multiplied by (21). Writing the finite difference x(q 2 q21) 5
xDq 5 Dqx, which for q → 1 is assumed to be a q-scaling way of going to
the infinitesimal limit dx, we see that the q drift parts go to zero, whereas
in the same limit the potential and zero-point sectors take forms identical to
those of the undeformed case. More precisely, the undeformed limits read

Ô 1
b [ h0 5 2D2 1 b2

1x2 1 b1 (14)

and

Ô1
f [ h1 5 2D2 1 b2

1x2 2 b1 (15)

(14) and (15) are the usual quantum mechanical supersymmetric partner
Hamiltonians for this case.
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In SUSYQM terminology, only the case of zero factorization energy
e 5 0 has been tackled up to now, but following a suggestion of Bagrov and
Samsonov [4], there is no difficulty to sketch the procedure for the more
general case e , 0. First, the deformed Schrödinger solution corresponding
to the excited harmonic oscillator states can be sought in the form

c(q)
n (x) } H(q)

n (x)eq(2x2/2) (16)

Next, in order to avoid any singularities, it is convenient to perform an i-
rotation x → ix, leading to

u(q)
p (x) } H(q)

p (ix)eq(x2/2), p 5 0, 1, 2, 3, . . . (17)

The undeformed functions u(1)
p are solutions of h0u(1)

p 5 2( p 1 1)u(1)
p and are

nodeless on the full line for even p 5 2k. Therefore, they have been used
by Bagrov and Samsonov as Darboux transformation functions to generate
a family of regular potentials, which, according to an interpretation due to
Veselov and Shabat [6], has a spectrum made up of 2k 1 1 segments with
equidistant levels. This immediately suggests using u(q)

p (x) for even p 5 2k
as Darboux transformation functions in the deformed case. Thus, the
intertwining operators can be calculated according to

T q
2k,1 5 Dq 2

Dqu
(q)
2k

u(q)
2k

and T q
2k,2 5 2Dq 2

Dqu
(q)
2k

u(q)
2k

and again by exploiting the factorization property one is led to second-order
deformed, nonlocal operators of more complicated formulas than (10) and
(11), which are not written down here.

In conclusion, a pair of q-nonlocal second-order q-differential (q-differ-
ence) operators have been introduced in this work by means of a particular
q-deformed intertwining based on q-deformed oscillator vacua as Darboux
transformation functions. These operators display a mixed structure between
the Hermite operator, to which they are similar as regards the first derivative
term, and the quantum mechanical oscillator operator, to which they are
similar as regards the x2 potential and zero-energy contributions. On the other
hand, they present a supplementary q-nonlocal 6x potential contribution with
no counterpart in either the Hermite polynomial operator or the Schrödinger
x2 oscillator operator. All these features suggest many possible applications,
e.g., in mesoscopic physics. A more general case corresponding to negative
factorization energies of the type em 5 2(m 1 1), where m is an even,
positive integer, has also been briefly described.

ACKNOWLEDGMENT

This work has been supported in part by CONACYT project 458100-
5-25844E.



2196 Rosu

REFERENCES

1. L. C. Biedenharn and M. A. Lohe, Quantum Group Symmetry and q-Tensor Algebras (World
Scientific, Singapore, 1995).

2. H. C. Rosu, in Symmetries in Quantum Mechanics and Quantum Optics, A. Ballesteros,
F. J. Herranz, C. M. Pereña, J. Negro, and L. M. Nieto, eds. (Serv. Publ. Univ. Burgos,
Burgos, Spain, 1999), pp 301–315 (quant-ph/9809056).

3. F. Cooper, A. Khare, and U. Sukhatme (1995). Phys. Rep. 251, 267.
4. V. G. Bagrov and B. F. Samsonov (1997). Fis. Elem. Chastits At. Yadra 28, 951 [Phys.

Part. Nucl. 28, 374 (1997)]; B. F. Samsonov (1998). J. Math. Phys. 39, 967; see also D. J.
Fernández C., V. Hussin, and B. Mielnik (1998). Phys. Lett. A 244, 309.

5. F. L. Chan and R. J. Finkelstein (1994). J. Math. Phys. 35, 3273; J. Feigenbaum and P. G. O.
Freund (1996). J. Math. Phys. 37, 1602.

6. A. P. Veselov and A. B. Shabat (1993). Funkts. Anal. Prilozh. 27, 1 [Funct. Anal. Appl. 27
(1993) 81].


